
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 268 (2003) 1041–1053

Letter to the Editor

The complete-similitude scale models for predicting the
vibration characteristics of the elastically restrained flat plates

subjected to dynamic loads

Jia-Jang Wu*

Department of Marine Engineering, National Kaohsiung Institute of Marine Technology, No. 142, Hai-Chuan Road,

Nan-Tzu, Kaohsiung 811, Taiwan, Republic of China

Received 27 February 2003; accepted 17 March 2003

1. Introduction

In order to predict the physical characteristics of the full-size system from those of its scale
models, the similitude conditions (or the scaling laws) between the full-size system and its scale
models must be satisfied. Several researchers have studied the relating problems. For example,
Qian et al. [1] have studied the scaling laws for impact damage in fibre composites. Vassalos [2]
has investigated the modelling and similitude of marine structures. Some valuable information
concerning the appropriate use of models in the design of marine structures is presented. Safoniuk
et al. [3] have proposed an approach to scale-up the three-phase fluidized beds with the aid of the
Buckingham p theorem [4]. Stimitses and Rezaeepazhand et al. [5–7] have established a scale
model for predicting the free vibration and buckling of laminated shell. In their reports, the
similitude theory [8] is used to establish the similarity between the chosen structural systems. Wu
et al. [9] have presented the scaling laws for the prediction of the vibration characteristics of a full-
size crane structure from those of a scale model by means of the similitude theory [8] and the
dimensional analysis [10].
From the foregoing literature, one sees that the researchers usually established the scaling laws

between the full-size system and scale model based on the theory of similitude. Then, the
experiments or numerical analyses were performed to validate the presented scaling laws. Since
the information concerning the scaling issues for vibration characteristics of the plate-typed
structures subjected to moving loads is not found yet, the title problem is studied here and it is
hoped to provide a systematic method for establishing the complete-similitude scale models. It has
been found that the vibration characteristics of the full-size system, such as natural frequencies,
mode shapes and the transverse deflections, can be accurately predicted by means of the
corresponding ones of its scale models and the associated scaling factors.
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2. Derivation of scaling laws

In general, the physical characteristics of a full-size system will be proportional to those of its
scale model if the latter is properly scaled. Based on the similitude theory, one may assure the
similarity between the physical characteristics of a full-size system and the corresponding ones of
the scale model. For the static analysis, the geometric similitude between the full-size system and
its scale model is enough. For the dynamic analysis, both the kinematic and the dynamic
similitudes between the two systems are also required, in addition to the geometric similitude. In
this section, the similarity conditions (i.e., scaling laws) for the dynamic similitude (or similarity)
between the full-size plate-typed system and its scale model are presented.
For an undamped uniform rectangular plate (see Fig. 1), the equation of motion is given by [11]
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where

D ¼ Eh3=½12ð1� n2Þ� ð2Þ

is the bending rigidity of the plate, E is the Young’s modulus, h is thickness of the plate, n is the
Poisson ratio, m is mass per unit area of the plate, while F ðx; y; tÞ and wðx; y; tÞ; respectively,
represent the external load per unit area of the plate and the vertical (transverse) deflection of the
plate at position ðx; yÞ and time t:
If a concentrated force with magnitude f ðtÞ ¼ F ðx; y; tÞ � bc applies at (xf ; yf ) of the plate (see

Fig. 1), then Eq. (1) can be re-written as
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Fig. 1. A flat plate subjected to a concentrated force f located at (xf ; yf ).
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where b and c; respectively, represent the width and length of the rectangular plate, r is the mass
density of the plate material and dð�Þ denotes the Dirac delta function. It is noted that the two
important scalable parameters, plate width b and length c disappearing in Eq. (1) is now to appear
in Eq. (3).
From Eq. (3), one obtains a set of scalable parameters capable of representing the physical

characteristics of the system

f %fg ¼ ½ b c h w x y t f �T; ð4Þ

where f %fg denotes a vector composed of the following parameters: plate width (b), plate length
(c), plate thickness (h), transverse deflection (w), planar (horizontal) co-ordinates (x and y), time
(t) and point force (f ).
The requirement for the complete similitude is that the ratios between all the scalable

parameters for the full-size system and those for the scale model must be equal to some constant
ratios. These constant ratios are generally called the scaling factors and are necessarily
dimensionless. Based on the parameters appearing in Eq. (4), the scaling factors are defined by

lf ¼ fs=fF with f ¼ b; c; h;w;x; y; t; f ; ð5Þ

where lf represents the scaling factor for the parameters f (¼ b; c; h;w; x; y; t; f ), and the
subscripts F and s; respectively, represent the ‘‘full-size’’ system and the ‘‘scale’’ model.
For the full-size system, Eq. (3) can be written as
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It is evident that wF denotes the transverse deflection of the full-size plate at the position ðxF ; yF Þ
and time tF ; i.e., wF � wF ðxF ; yF ; tF Þ:
Similarly, for the scale model, Eq. (3) can be written as
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It is noted that ws � wsðxs; ys; tsÞ; besides, the mass density for the full-size system and that for the
scale model are assumed to be the same, i.e., rF ¼ rs ¼ r:
Substituting Eq. (5) into Eq. (7) leads to
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From Eqs. (6) and (8), one sees that the solution of Eq. (8) will be proportional to that of Eq. (6) if
the ratios between the coefficients of @4wF=@x4F ; @

4wF=@x2F@y2F ; @
4wF=@y4F ; @

2wF=@t2F and fF ðtF Þ in
Eq. (8) and the corresponding ones in Eq. (6) are equal to a constant, i.e.,

l3hlblc
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l4x
¼ l3hlblc

lw

l2xl
2
y

¼ l3hlblc
lw

l4y
¼

lblhlclw

l2t
¼ lf ða constantÞ ð9Þ

Eqs. (9) constitute the scaling laws, since all the scaling factors, lf (f ¼ b; c; h;w; x; y; t; f ), must
satisfy Eqs. (9) then the scale model may be completely similar to the full-size system. For
convenience, all the scaling factors appearing in the scaling laws defined by Eq. (9) are called the
explicit scaling factors hereafter.
It is noted that the scaling laws derived in this paper are based on the theory of ‘‘thin’’ plates.

For other types of plates, the scaling laws must be re-derived according to their equations of
motion. However, the scaling laws will not change with the dimensions of the plates if their
equations of motion are in the same form.

3. Solution for the explicit scaling factors

Eqs. (9) consist of four equations and eight unknowns (lf; f ¼ b; c; h;w;x; y; t; f ). Because the
total number of equations is less than that of the unknowns, solving Eqs. (9) for the unknowns lf
one may obtain many sets of scaling factors. In this paper, one solution for the scaling factors was
determined by selecting the scaling factor for the transverse deflection defined by the equation of
motion, (6) or (8), lw; as the fundamental scaling parameter and introducing the following
relationships obtained from the dimensional analysis theory [10]

lk ¼ lw ðk ¼ b; c; h;w;x; y; tÞ; ð10aÞ

lf ¼ l2w: ð10bÞ

It is evident that the scaling factors given by Eq. (10) satisfy the scaling laws defined by Eqs. (9).
For this reason, Eqs. (10) were selected as the solution for the scaling factors in this paper. It is
noted that Eq. (10b) is derived from the expression f ðtÞ ¼ Fðx; y; tÞ � bc:
Eqs. (10) implies that if the width bs; the height hs and the length cs of the scale model are equal

to lw times the corresponding ones of the full-size system, and the external load fs of the scale
model is equal to l2w times that of the full-size system, then the dynamic responses of the scale
model, ws; due to the external load fs applied at position (xs; ys) and at time ts will be equal to lw

times those of the full-size system, wF ; due to the external load fF ¼ fs=l
2
w applied at position

(xF ;yF ) and at time tF : Where tF ¼ ts=lt; xF ¼ xs=lx and yF ¼ ys=ly:

4. Determination of the implicit scaling factors

The object of this paper is to predict the physical characteristics of a full-size elastically
restrained flat plat subjected to the moving loads by means of its scale model, hence, all the
physical parameters affecting the dynamic behaviour of the full-size system must be properly
scaled. It is evident that, in addition to the explicit scaling factors appearing in the scaling laws
derived from the governing equations for the full-size system and the scale model, the implicit
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scaling factors disappearing in the scaling laws but relating to the supporting (boundary)
conditions and the excitation mechanisms must also be suitably defined, then the complete-
similitude conditions between the full-size system and the scale model may be satisfied. The
explicit scaling factors include those for the length, width, thickness and displacement of the plate,
those for the positions and magnitude of the external force, and that for time. They have been
determined by Eqs. (10). However, the implicit scaling factors, such as those for the translational
springs and rotational springs being used to support the flat plate, those for the excitation
frequency and moving-load speed, and those for the damping ratios and natural frequencies of the
plate, are not defined yet. These implicit scaling factors will be determined in the following by
means of the dimensional analysis theory. It is noted that the scaling factor for the transverse
deflection of the plate, lw; is used as the fundamental scaling parameter in this paper.
Since the dimension for the natural frequency (o) of the structure or that for the excitation

frequency (O) of the external load is the reciprocal of time (t), i.e.,

Do ¼ DO ¼ 1=Dt; ð11Þ

where the symbol Dv represents ‘‘the dimension of v’’ (v ¼ o; O or t), the scaling factor for the
natural frequency of the structure, lo; and that for the excitation frequency of the external load,
lO; are given by

lo ¼ lO ¼ 1=lt ¼ 1=lw: ð12Þ

It is noted that the last dimensional analysis result given by Eq. (12) agrees with the result of Ref.
[9] derived from the physical formula: op

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrAÞ

p
:

By means of the similar dimensional analysis technique, one may obtain the scaling factors for
the translational spring (kc), the rotational spring (kr), the moving-load speed (V ) and the
damping ratio (x). The results were listed in Table 1.
In deriving the scaling factor for the rotational springs (kr), it is noted that the rotation angle (y)

is a non-dimensional quantity, thus, Dy ¼ 1: Besides, the damping ratio (x) is non-dimensional,
thus, its scaling factor is lx ¼ 1:
From Table 1 one sees that both the values of lV and lx are equal to one. This means that based

on the explicit scaling factors given by Eqs. (10), both the moving-load speed (V ) and the damping
ratio (x) for the scale model must be equal to those for the full-size system, then the scale model
may be complete similar to the full-size model. In other words, it is not necessary that each
parameter of the full-size system must be scaled down (or up), then the scale model may be
complete similar to the full-size system.
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Table 1

The scaling factors for the natural frequency (o), excitation frequency (O), translational spring (kc), rotational spring

(kr), moving-load speed (V ) and damping ratio (x)

Parameters Dimensional analyses Scaling factors

Natural frequency (o) or excitation frequency (O) Do ¼ DO ¼ 1=Dt lo ¼ lO ¼ 1=lt ¼ 1=lw

Translational spring (kc) Dkc ¼ Df =Dw lkc ¼ lf =lw ¼ l2w=lw ¼ lw

Rotational spring (kr) Dkr
¼ Df Dw=Dy lkr

¼ lf lw=1 ¼ l2wlw=1 ¼ l3w
Moving-load speed (V) DV ¼ Dw=Dt lV ¼ lw=lt ¼ lw=lw ¼ 1
Damping ratio (x) — lx ¼ 1
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5. Dynamic responses of the rectangular plate subjected to dynamic loads

In this paper, the natural frequencies and the associated mode shapes of the elastically
restrained flat plate (see Figs. 2, 4 and 6) were determined by the finite element method (FEM).
Either the full-size system or the scale model was subdivided into 10� 10 identical rectangular
plate elements bounded by 121 nodes (see Figs. 2, 4 and 6). The Jacobi method [12] is used to
calculate the lowest 10 natural frequencies and mode shapes of the full-size system and the
corresponding ones of the scale model. Since the computing time required by the Jacobi method
will dramatically increase with increasing the total degree of freedom for the entire structural
system, the other appropriate technique [12] should be used when the complex structure with
many degrees of freedom is investigated. The forced vibration responses, fwðx; y; tÞg; of the full-
size system and the scale model due to the dynamic loads, f %fðtÞg; were determined by the mode-
superposition method incorporated with the Duhamel integration [12].
The fundamental scaling factor for the transverse deflection of the plate was assumed to be

lw ¼ 1=10: The lowest ten modes, each with damping ratio xi ¼ 0:005 (i ¼ 1 to 10), were used for
the superposition method. The time step size is DtF ¼ 0:005 s for the full-size system and
Dts ¼ DtFlt ¼ DtFlw ¼ 0:0005 s for the scale model and all the initial conditions were assumed to
be ‘‘at rest’’.

6. Numerical results and discussions

In this section, the scaling factors given by Eqs. (10) and Table 1 were validated with the free
and forced vibration characteristics of a flat plate elastically restrained by the translational and
rotational springs along the left side AB and the right side CD of the plate (see Figs. 2, 4 and 6),
and subjected to a stationary harmonic load, *fðtÞ ¼ *f0 sinOt; and a point load with magnitude f0
moving from left side to right side along the centreline of the plate in the %x direction with constant
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Fig. 2. An elastically restrained flat plate subjected to a stationary harmonic load, *fðtÞ ¼ *f0 sinOt; located at ( %x *f; %y *f).
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speed V : The full-size plate and its scale model were made of the same material with Young’s
modulus E ¼ 206:8GN/m2, mass density r ¼ 7820 kg/m3 and the Poisson ratio n ¼ 0:29: Based
on the assumed scaling factor, lw ¼ 1=10; all the pertinent parameters for the full-size system and
the scale model were calculated and listed in Table 2. The requirement for the selection of a
fundamental scaling factor is that the relationships between all the scaling factors defined by
Eqs. (10a) and (10b) must be satisfied. Because the scaling factors for length (lc), width (lb),
thickness (lh) are equal to that for transverse (%z) deflection (lw), i.e., lc ¼ lb ¼ lh ¼ lw; as one
may see from Eq. (10), the transverse (%z) responses of the plate will remain unchanged no matter
whether lc; lb; lh or lw is selected as the fundamental scaling factor.

6.1. Validation of scaling laws by free vibration characteristics

In order to perform the forced vibration analyses using the mode superposition method, the
lowest ten natural frequencies and mode shapes of the vibrating systems were determined. Table 3
shows the lowest five natural frequencies for the full-size system and the 1/10 scale model. In
which, the natural frequencies listed in the second and the third columns are, respectively,
obtained from the Jacobi method and the Lanczos method [13]. Since the associated natural
frequencies obtained from the two different methods are very close to each other, the computer
program developed for this research based on the Jacobi method should be reliable. From the
final column of the table, one sees that the natural frequency ratio, lo;i ¼ os;i=oF ;i; for each mode
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Table 2

Parameters for elastically restrained flat plates with scaling factor lw ¼ 1=10

Parameters Full-size system Scale model

Length c (m) cF¼ 10:0 cs ¼ cFlc ¼ cFlw ¼ 1:0
Width b (m) bF¼ 10:0 bs ¼ bFlb ¼ bFlw ¼ 1:0
Thickness h(m) hF¼ 0:1 hs ¼ hFlh ¼ hFlw ¼ 0:01
Damping ratio x xF¼ 0:005 xs ¼ xFlx ¼ 0:005 (lx ¼ 1)
Translational spring constant, kc (MN/m) kcF¼ 290 kcs ¼ kcFlkc ¼ kcFlw ¼ 29
Rotational spring constant, kr (MNm/rad) krF¼ 340 krs ¼ krFlkr

¼ krFl
3
w¼ 0:34

Size of each plate element,Dc� Db � Dh (m) 1.0�1.0�0.1 0.1� 0.1� 0.01

Table 3

The lowest five natural frequencies of elastically restrained flat plates

Mode no. i Natural frequencies, oi (Hz) Frequency ratios, lo;i ¼ os;i=oF ;i

Full-size system, oF ;i Scale model, os;i

Jacobi Lanczos [13]

1 5.3759 5.3786 53.7589 9.9999

2 6.3033 6.3065 63.0332 10.0000

3 10.0779 10.0831 100.7795 10.0000

4 14.8467 14.8542 148.4671 10.0000

5 16.0156 16.0237 160.1560 10.0000
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is very close to 10.0, i.e., lo;iE10:0 for i ¼ 1B5: This result agrees with the scaling factor for
frequency, lo ¼ 1=lw ¼ 1= 110 ¼ 10; as one may see from Table 1. It is noted that each of the
natural frequencies for the full-size system shown in the 2nd and 3rd columns of Table 3 and the
corresponding ones for the scale model shown in the 4th column of Table 3, have the same
corresponding mode shapes.

6.2. Forced vibration characteristics due to a stationary harmonic load

In this section, the forced vibration characteristics of the full-size system and the scale model
respectively subjected to a stationary harmonic force, *fF ðtF Þ ¼ *fF0 sinðOF tF Þ and *fsðtsÞ ¼
*fs0 sinðOstsÞ; were investigated and then the reliability of the presented scaling laws were
validated. The location of the force *fF ðtF Þ is at %x *fF

¼ 2:5 and %y *fF
¼ 2:5m on the full-size system,

while that of *fsðtsÞ is at %x *fs
¼ 0:25 and %y *fs

¼ 0:25m on the scale model. The magnitudes for the
pertinent parameters associated with the two stationary harmonic forces, *fF ðtF Þ and *fsðtsÞ; were
calculated and shown in Table 4 based on the assumed scaling factor lw ¼ 1=10:
Fig. 3 shows three time–history curves for the vertical (%z) central displacements of the full-size

plate. Among which, the thick dashed curve (- - -) and the thin solid curve with circles (—J—),
respectively, represent the time histories for the vertical (%z) central displacements of the full-size
plate, %zF ðtÞ; by using the mode superposition method (MSM) and the Newmark method [14],
while the thin solid curve with stars (—%—) represents those obtained from the scale model and
the scaling laws, i.e., %zF ðtÞ ¼ %zsðtÞ=lw ¼ 10%zsðtÞ with lw ¼ 1=10: Because the thick dashed curve
(- - -) is in good agreement with the thin solid curve with circles (—J—), it is believed that the
computer program developed for this paper based on the mode superposition method (MSM)
should be reliable. For convenience, the values of %zF ðtÞ and %zsðtÞ=lw are called the theoretical value
and predicted value of the vertical (%z) central displacements of the full-size plate, respectively,
and the associated curves, %zF ðtF Þ versus tF and %zsðtsÞ=lw versus ts=lt; are called the theoretical and
predicted time histories, respectively. From the Fig. 3, it can be seen that the theoretical and
predicted time histories are in good agreement.

6.3. Forced vibration characteristics due to a moving point load

This subsection validates the scaling laws using the forced vibration characteristics due to a
moving point load. All the conditions for this example are exactly the same as those for the last
example except that the stationary harmonic load, *fðtÞ; is replaced by a point load with magnitude
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Table 4

Parameters for the stationary harmonic loads applied on the full-size system and the scale model with scaling factor

lw ¼ 1=10

Parameters Full-size system Scale model

Force amplitude, f0 (N) fF0=7480.0 fs0 ¼ fF0lf ¼ fF0l
2
w ¼ 74:8

Excitation frequency, O (Hz) OF ¼ 5:3759 Os ¼ OFlO ¼ OF=lw ¼ 53:759
Time duration, %t(s) %tF¼ 10:0 %ts ¼ tFlt ¼ tFlw ¼ 1:0
%x co-ordinate of load %x *fF

¼ 2:5m %x *fs
¼ %x *fF

lx ¼ %x *fF
lw ¼ 0:25m

%y-co-ordinate of load %y *fF
¼ 2:5m %y *fs

¼ %y *fF
ly ¼ %y *fF

lw ¼ 0:25m
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f0 moving from left side to right side along the centreline of the plate in the %x direction with
constant speed V ; as shown in Fig. 4. The magnitude and moving speed of the point load, and the
time duration that numerical analyses were performed were listed in Table 5. The initial and final
positions for fF are ( %xfF

¼ 0m, %yfF
¼ 5m) and ( %xfF

¼ 10m, %yfF
¼ 5m) on the full-size system,

respectively, while those for fs are ( %xfs ¼ 0m, %yfs ¼ 0:5m) and ( %xfs ¼ 11m, %yfs ¼ 0:5m) on the
scale model, respectively.
The time histories for the vertical (%z) central displacements of the full-size plate were shown in

Fig. 5. The denotations for the curves in the figure are exactly the same as those in Fig. 3. It is
apparent that the theoretical and predicted time histories are also in good agreement. From all the
foregoing investigations, one sees that both the free and forced vibration characteristics of a full-
size system can be precisely predicted with the scale model and the associated scaling laws.

6.4. Dynamic responses of an elastically restrained flat plate supported by an elastic foundation and

subjected to a stationary harmonic load and a moving point load

After the reliability of the theory the computer programs for this paper have been confirmed,
this subsection tries to predict the dynamic responses of the foregoing elastically restrained
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Fig. 3. Theoretical and predicted time histories for the vertical (%z) central displacements of the elastically restrained flat

plate due to a stationary harmonic load *fF ðtÞ ¼ 7480 sinð5:3759tF Þ N with scaling factor lw ¼ 1=10: (The corresponding
load for the scale model is *fsðtÞ ¼ 74:80 sinð53:759tsÞN).
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full-size flat plate supported by an elastic foundation and subjected to the combined excitations of
a stationary harmonic load and a moving point load by means of the scale model and the scaling
laws. In this example, all the conditions for the stationary harmonic load and the moving point
load are exactly the same as those of the last two examples, respectively. However, the elastically
restrained flat plate (see Fig. 4) is further supported by an elastic foundation, as shown in Fig. 6.
The spring constant for each translational spring of the elastic foundation is %kcF ¼ 228 kN/m, for
the full-size system, and %kcs ¼ %kcFlkc ¼ 22:8 kN/m, for the scale model. The total number of
translational springs for the elastic foundation is Nspring ¼ 99; which is equal to the total number
of nodes excluding those on the left side AB and on the right side CD of the flat plate.
Table 6 shows the lowest five natural frequencies for the full-size system, oF ;i; and those for the

scale model, os;i; while Fig. 7 shows the theoretical and predicted time histories for the vertical (%z)
central displacements of the full-size plate. From the frequency ratios shown in the final column of
Table 6, lo;i ¼ os;i=oF ;i (i ¼ 125), and the coincidence between the time histories shown in Fig. 7,
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Fig. 4. An elastically restrained flat plate subjected to a point load f0 moving from left side to right side along the

centreline of the plate in the %x direction with constant speed V :

Table 5

Parameters for the moving loads on the full-size system and the scale model with scaling factor lw ¼ 1=10

Parameters Full-size system Scale model

Force amplitude, f0 (N) fF0¼ 845:0 fs0 ¼ fFlf ¼ fFl
2
w ¼ 8:45

Moving-load speed, V (m/s) VF¼ 1:0 Vs ¼ VFlV ¼ 1:0 (lV ¼ 1)
Time duration, %t (s) %tF¼ 10:0 %ts ¼ %tFlt ¼ %tFlw ¼ 1:0
Initial position of moving load %xfF

¼ 0m %xfs ¼ %xfF
lx ¼ %xfF

lw ¼ 0m
%yfF

¼ 5m %yfs ¼ %yfF
ly ¼ %yfF

lw ¼ 0:5m
Final position of moving load %xfF

¼ 10m %xfs ¼ %xfF
lx ¼ %xfF

lw ¼ 1m
%yfF

¼ 5m %yfs ¼ yfF
ly ¼ %yfF

lw ¼ 0:5m
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it is apparent that the dynamic characteristics of a general vibrating system subjected to the
general excitations (such as the case shown in Fig. 6) can also be accurately predicted by means of
the scale model and the scaling laws presented in this paper.
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Fig. 6. An elastically restrained flat plate supported by an elastic foundation and subjected to a stationary harmonic

load, *fðtÞ ¼ *f0 sinOt; and a point load f0 moving from left side to right side along the centreline of the plate in the %x

direction with constant speed V :

0.0 2.0 4.0 6.0 8.0 10.01.0 3.0 5.0 7.0 9.0

Time, t = tF = ts / λ
t
(sec)

-4.00E-005

-3.00E-005

-2.00E-005

-1.00E-005

0.00E+000

-3.50E-005

-2.50E-005

-1.50E-005

-5.00E-006
V

er
tic

al
 (

z)
 c

en
tr

al
 d

is
pl

ac
em

en
ts

 o
f 

pl
at

e 
(m

)

zs / λw

z
F

Fig. 5. Theoretical and predicted time histories for the vertical (%z) central displacements of the elastically restrained flat

plate due to a moving point load with magnitude fF ðtÞ ¼ 845:0N and speed VF ¼ 1:0m/s with a scaling factor lw ¼
1=10 and damping ratio xF ¼ xs ¼ 0:005 (the corresponding load for the scale model is fsðtÞ ¼ 8:45 N and

Vs ¼ VF ¼ 1:0m/s.)
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7. Conclusions

1. In order to establish a complete-similitude scale model, one must assure the geometric,
kinematic and dynamic similarities between the scale model and its full-size structural system.
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Table 6

The lowest five natural frequencies of an elastically restrained flat plate supported by an elastic foundation with scaling

factor lw ¼ 1=10

Mode no. i Natural frequencies, oi (Hz) Frequency ratios, lo;i ¼ os;i=oF ;i

Full-size system, oF ;i Scale model, os;i

1 6.0955 60.9552 10.0000

2 7.0169 70.1692 10.0000

3 10.5611 105.6108 9.9999

4 15.1259 151.2591 10.0000

5 16.3093 163.0930 10.0000
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Fig. 7. Theoretical and predicted time histories for the vertical (%z) central displacements of the elastically restrained flat

plate supported by an elastic foundation and subjected to a stationary harmonic load *fF ðtF Þ ¼ 7480 sinð5:3759tF ÞN and

a moving point load with magnitude fF ðtF Þ845:0N and speed VF ¼ 1:0m/s, with scaling factor lw ¼ 1=10 and damping
ratio xF ¼ xs ¼ 0:005 (the corresponding loads for the scale model are *fsðtsÞ ¼ 74:80 sinð53:759tsÞN and fsðtsÞ ¼ 8:45N ;
and Vs ¼ VF ¼ 1:0m/s).
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To this end, both the explicit and implicit scaling factors should be determined. The explicit

scaling factors may be obtained from the scaling laws derived from the equations of motion,
and the implicit scaling factors relating to the supporting conditions and the excitation
mechanisms may be obtained by means of the theory of dimensional analysis.

2. To achieve the complete similitude, the ratios between the scalable parameters of the full-size
system and the corresponding ones of the scale model are usually different from each other. For
example, the scaling factors for length, time, force, natural frequency, forcing frequency,
translational spring, rotational spring, moving-load speed and damping ratio are respectively
given by lw; lw; l

2
w; 1=lw; 1=lw; lw; l

3
w; 1 and 1, in this paper. Therefore, any set of selected

scaling factors must be validated before they are applied to designing a scale model for practical
experiments.
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